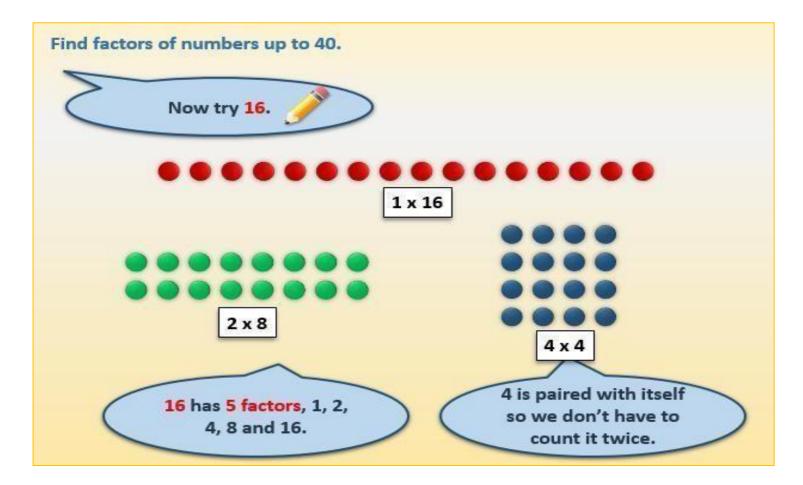

Y4 Maths Home Learning Week beginning 29.06.20 (Week10) Factors

- Start by carefully reading through the Learning Reminders.
- Then, in your Home Learning books, write today's date along with the title, 'Factors' and complete Activity 1. If you struggle, have a go at completing A Bit Stuck?
- If you need to refresh your memory, read through the Learning Reminders.
- Then, in your Home Learning books, write today's date along with the title, 'Seven times table facts' and complete Activity 2. If you struggle, have a go at completing A Bit Stuck?


Extra:

If you think you've cracked it and whizzed through Activities 1 & 2, have a go at the **Investigation**.

Learning Reminders

Learning Reminders

Activity 1 Matching factors

 \wedge

Match each number to its factors. Add the number itself to the list of factors, e.g. 15 has 15 as a factor, so 15 must be added to 1, 3 and 5.

Section A

15	3,7,1
6	2,3,1
21	3,1,5
10	2, 4, 3, 6, 12, 8, 1
12	1, 5, 2
24	2, 3, 4, 1, 6

Section **B**

22	2, 1, 6, 9, 3
31	3,1
9	2,11,1
36	5, 1, 2, 3, 15, 6, 10
18	1
30	1, 4, 2, 18, 9, 3, 6, 12

Challenge

Most of the numbers you investigated had an even number of factors, but some had an odd number of factors. I wonder what makes these numbers special?

Can you find any other numbers with an odd number of factors?

Activity 2 Matching factors

0

🔺 🔶

Match each number to its factors. Add the number itself to the list of factors, e.g. 15 has 15 as a factor, so 15 must be added to 1, 3 and 5.

Section C

34	1,4,2
4	2,17,1
16	3, 2, 4, 8, 12, 6, 16, 1, 24
39	4, 2, 1, 5, 10, 8, 20
48	3, 1, 13
40	8,4,1,2
25	7,1
49	4, 2, 16, 1, 8
32	1,5

Challenge

Which has more factors: 99 or 100 or 101? Guess then test!

 $\mathbf{+}$

Answers

- -

Activity 1

Section A	Section B
15: 1, 3, 5, 15	22: 1, 2, 11, 22
6: 1, 2, 3, 6	31:1,31
21: 1, 3, 7, 21	9: 1, 3, 9
10: 1, 2, 5, 10	36: 1, 2, 3, 4, 6, 9, 12, 18, 36
12: 1, 2, 3, 4, 6, 12	18: 1, 2, 3, 6, 9, 18
24: 1, 2, 3, 4, 6, 8, 12, 24	30: 1, 2, 3, 5, 6, 10, 15, 30

Challenge

9 and 36 should be ringed. Thes e are both square numbers. For another number with an odd number of factors, accept any square number, i.e. 1, 4, 16, 25, 49, 64, 81, 100 ...

Activity 2

Section C

34: 1, 2, 17, 34 4: 1, 2, 4 16: 1, 2, 4, 8, 16 39: 1, 3, 13, 39 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 40: 1, 2, 5, 8, 10, 20, 40 25: 1, 5, 25 49: 1, 7, 49 32: 1, 2, 4, 8, 16, 32

Challenge

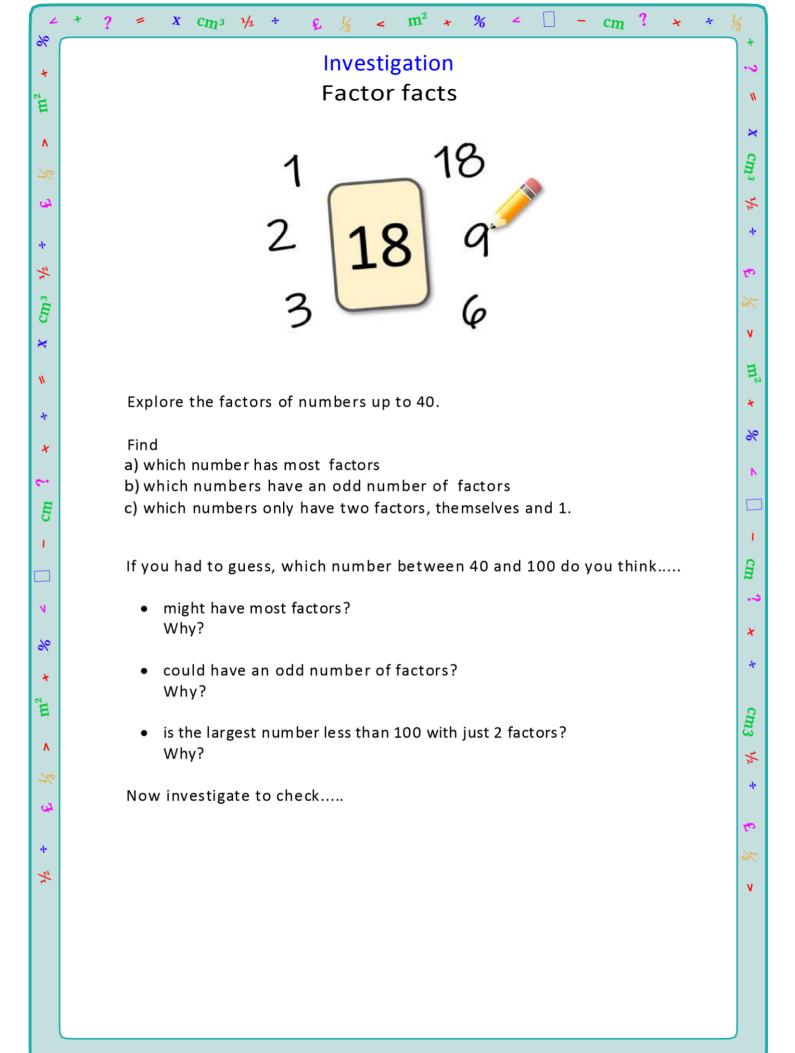
100 has more factors than 99 or 101.

14, 16, 24, 27, 29, 32, 36

14

1 × 14

 2×7


- Choose a number. Take this number of counters. Arrange the counters into an array (rectangle). Write the matching multiplication.
- Now rearrange them into as many different arrays as you can.
 - Write the matching multiplication each time.
- Score one point for each multiplication you write.
- Choose another number and do the same.
 Try to score as many points as you can.
- Carry on choosing different numbers and making as many arrays as you can.
 Write the matching multiplication each time.
- Which numbers do you think will score lots of points?
 Which number do you think won't score many points?

S-t-r-e-t-c-h:

Find the number between 40 and 50 with the greatest number of factors, i.e. the greatest number of possible arrays.

Learning outcomes:

- I can make different arrays for a given number and write the matching multiplications.
- I understand that multiplication works both ways, e.g. $4 \times 6 = 6 \times 4$.
- I am beginning to identify pairs of factors.

