
20 Rising Stars 2020 © Hodder & Stoughton Limited

Unit 6.2: We are computational thinkers
 Mastering algorithms for searching, sorting and maths

Software: Google Maps, Scratch (alternative: Snap!)
Hardware: Laptop/desktop/Chromebook computers or iPads, unplugged resources

Knowledge, skills and concepts

In this unit, pupils will learn to:
●	 develop the ability to reason logically about

algorithms
●	 understand how some key algorithms can be

expressed as programs
●	 understand that some algorithms are more

efficient than others for the same problem
●	 understand common algorithms for searching

and sorting a list.

Progression
In Key Stage 1:
●	 Pupils thought about recipes as sequences of

instructions in Unit 1.2: We are TV chefs.

●	 Pupils thought about the sets of rules for some
simple computer games in Unit 2.2: We are
game testers.

In Key Stage 2:

●	 Pupils used logical reasoning to detect and
correct errors in programs in Unit 3.2: We are
bug fixers.

●	 Pupils were introduced to the idea of a graph
linking locations in an interactive adventure
game in Unit 5.5: We are adventure gamers.

●	 Pupils are introduced to some of the algorithms
for machine learning and other aspects of artificial
intelligence in Unit 6.6: We are AI developers.

Overview

In this unit, pupils participate in some hands-on
unplugged activities which help them to develop an
understanding of some important algorithms. They
also investigate these when implemented as Scratch
or Snap! programs. In:
●	 Session 1 they find the shortest route between towns
●	 Session 2 they find the smallest number of coins

needed to make change
●	 Session 3 they learn about random and linear

search algorithms

●	 Session 4 they learn about binary search algorithms
●	 Session 5 they learn about selection sort algorithms
●	 Session 6 they learn about quicksort algorithms.

Alternatives

Pupils could use Snap! as an alternative to Scratch
for the programming activities here. Bing or Apple
Maps can be used as an alternative to Google
Maps in Session 1.

Assessment – by the end of the unit:
All pupils can:
●	 use Google Maps to find the shortest or fastest

route between two places
●	 work out the smallest number of coins needed to

make an amount of change
●	 use random, linear and binary search to play the

‘Guess my number’ game
●	 sort yoghurt pots into order with a balance pan,

using their own algorithm and quicksort.
Most pupils can:
●	 find optimum routes on a simplified map
●	 record an algorithm for finding the smallest

number of coins to make change

●	 record algorithms for random, linear and binary
search

●	 record an algorithm for sorting
●	 appreciate that quicksort will be faster than, e.g.

selection sort.
Some pupils can:
●	 find the shortest set of roads to connect towns
●	 create a Scratch program to work out the smallest

number of coins needed to make change
●	 correct Scratch and Snap! programs which

implement search and sort algorithms.

481466_SOC_3E_U6.2_020_029.indd 20 09/08/20 9:38 PM

21Rising Stars 2020 © Hodder & Stoughton Limited

Background information

●	 Pupils have been learning about the
computational thinking concept of algorithms
(a sequence of steps or set of rules for solving a
problem) from Year 1 onwards. In this unit, they
consider a more abstract set of problems – from
finding routes and making change, to searching
and sorting programs.

●	 Most of these sessions start with ‘unplugged’
activities, where pupils think through the
algorithms away from the computer. They then
connect their problem-solving approach with
programming, and automating their solutions in
Snap! or Scratch.

Key vocabulary

Abstraction: computational thinking approach to
managing complexity by simplifying things, through
identifying what is important and what detail can be
hidden or ignored
Algorithm: a sequence of precise instructions or
steps (sometimes a set of rules) to achieve an
objective
Binary search: search algorithm that identifies
repeatedly which half of the list of possible elements
the target belongs to
Decomposition: breaking a problem down into
smaller parts
Divide and conquer: class of algorithms in which the
problem is decomposed into smaller, simpler parts, to
which the same algorithm can then be applied
Graph: data structure showing the connections
between elements
Greedy algorithm: algorithms that work on a ‘biggest
first’ basis, applying divide and conquer methods to
reduce the problem rapidly to a simpler problem

Linear search: search algorithm that looks at each
element in turn to see if it meets the criteria
Quicksort: ‘divide and conquer’ sort algorithm which
partitions a list into elements smaller than and larger
than a pivot element, and then applies the algorithm
to sorting each of these lists
Search: to identify an element of a list that meets
specified criteria
Search algorithm: the way results for a search are
selected and ranked, typically through the presence
of key words, and by the number and quality of
inbound links
Selection sort: sort algorithm which looks for the
largest element, then the next largest and so on,
until the list is in order
Sort: to put a list into order

Cross-curricular opportunities

●	 Geography: Pupils can learn about local routes,
transport and destinations.

●	 Maths: Pupils can investigate how many ways to
make change in money, play ‘Guess the number’
game, develop mathematical fluency by asking
different types of questions and ordering
numbers, decimals, percentages and fractions.

●	 English: Pupils can search for words in a
dictionary and arrange lists into alphabetical
order.

Differentiation

See each session (pages 23–28) for ways to
increase support and add challenge to this unit. To
challenge, encourage pupils to write the steps or
rules of their algorithms down, possibly recording
these as a diagram. Encourage them to translate
their algorithms into programs, testing whether
these work as they should. Ask pupils to think
about whether one approach to solving a problem
is better than another, and what this means.
For pupils who find these ideas difficult, focus on the
practical, ‘unplugged’ activities at the beginning of
each session, making use of physical manipulative,
practical equipment. For the programming
activities, provide pupils with partially completed
programs or Scratch ‘jigsaw’ puzzles, rather than
expecting them to work from a blank screen.

481466_SOC_3E_U6.2_020_029.indd 21 09/08/20 9:38 PM

Rising Stars 2020 © Hodder & Stoughton Limited

 Things to do
● Decide which software/tools are most accessible

and appropriate for use with your class.
● Watch the walkthrough videos.
● Watch the CPD videos (see Additional resources).
● Spend some time familiarising yourself with your

chosen software/tools.
● Ensure you have devices booked in advance.
● Prepare any unplugged resources that you are

going to use: for the sort activities, you will need
at least one set of eight opaque yoghurt pots or
Smarties tubes, each containing a different mass
(coins would work well) and a pan balance.

● Decide how you will organise the class for the
unit – pairs would work well. The pan balance
activities can be done as a whole class.

● Work through the unit yourself.

 Resources needed

● Software: Google Maps, Scratch, Snap!
● Hardware: Laptop/desktop/Chromebook

computers or iPads, unplugged resources

 Online resources provided

Session resources
● Worksheet 6.2a: Network graph
● Worksheet 6.2b: Guided question sheet
● Worksheet 6.2c: End-of-unit quiz
● Worksheet 6.2d: Pupil self-assessment
● Teaching slides 6.2a–6.2f
● Walkthrough videos 6.2a–6.2g
● Interactive end-of-unit quiz 6.2
Additional resources
● CPD video: Comparing search algorithms
● CPD video: Comparing sort algorithms
Alternatives
● Software in 60 seconds: Introduction to Snap!
● Software in 60 seconds: Scratch 1–7

 Online safety
● Pupils can use Scratch without accounts, but

need a parent/carer email address to join the
online community.

●	 While projects and comments on the Scratch
community can be deleted by moderators if
necessary, there is no automatic moderation. It
would be advisable to remind pupils of what is
appropriate and inappropriate behaviour, as well as
to whom they should report concerns about content.

● Snap! can be used without registering an
account. There is no age restriction, but it would
be wise to seek a parent or carer’s consent.

● When using Google Maps or other online
services, make sure that the necessary Internet
filtering and logging precautions are in place.

 Collaboration
In this unit, pupils discuss how to solve logical problems,
and how different tools work – such as search. They
also discuss the nuances between different types of
search and sort. They work together to solve problems,
and evaluate and assess different search types. Pupils
collaborate on computational thinking activities,
analyse their thinking and determine how this can be
applied to problem solving. The programming problems
here are best tackled by pupils working together.

 Useful links
Software and tools
● Scratch online at: scratch.mit.edu

or download from: scratch.mit.edu/download
● Snap! online at: snap.berkeley.edu or download the

zip archive from: www.github.com/jmoenig/Snap
● Google Maps: www.google.co.uk/maps
● Scratch programs and solutions for random

search jigsaw, linear search jigsaw, binary search
jigsaw and selection sort:
scratch.mit.edu/studios/27311495/

● Snap! quicksort buggy program:
snap.berkeley.edu/snap/snap.html#present:
Username=mgberry&ProjectName
=buggyquicksort

● Snap! quicksort solution:
snap.berkeley.edu/snap/snap.html#present:
Username=mgberry&ProjectName=quicksort

Online tutorials
● Scratch and Snap! tutorials in editors
Information and ideas
● Examples of search and sort activities from CS

Unplugged: www.csunplugged.org/activities
● BBC Bitesize search: www.bbc.co.uk/education/

guides/zgr2mp3/revision
● BBC Bitesize sort: www.bbc.co.uk/education/

guides/z2m3b9q/revision
● QuickStart Computing on computational

thinking: https://community.computingatschool.
org.uk/files/8221/original.pdf

● Dijksta’s shortest path algorithm:
www.youtube.com/watch?v=GazC3A4OQTE

Preparation for teaching the unit

22

481466_SOC_3E_U6.2_020_029.indd 22 11/08/20 10:01 PM

https://scratch.mit.edu/
https://scratch.mit.edu/download
https://snap.berkeley.edu/
https://scratch.mit.edu/studios/27311495/
https://snap.berkeley.edu/snap/snap.html#present:Username=mgberry&ProjectName=buggyquicksort
https://snap.berkeley.edu/snap/snap.html#present:Username=mgberry&ProjectName=quicksort
https://www.bbc.co.uk/bitesize/guides/zgr2mp3/revision/1
https://www.bbc.co.uk/bitesize/guides/z2m3b9q/revision/1
https://community.computingatschool.org.uk/files/8221/original.pdf

23Rising Stars 2020 © Hodder & Stoughton Limited

Learning objective To find the shortest routes on a map.
Steps and
activities

●	 TS6.2a
●	 V6.2a
●	 WS6.2a

In this session, pupils look for possible routes on a map, finding the shortest.

1 Ask pupils to think of the route from their school to a familiar location, such as a shop in
the local town centre.

2 Ask pupils to write down the sequence of instructions for how to get from the school to the
location. Discuss the following questions:
●	 Has everyone chosen the same route?
●	 If not, how could you decide which route is best?
●	 Explain that the sequence of instructions is an algorithm. What other algorithms have

pupils written in computing lessons?
3 Show pupils Google Maps and ask it to find a route from the school to the chosen location

(you could use TS6.2a/V6.2a to model this).
●	 Show the sequence of driving instructions.
●	 Show how it can give walking, cycling and public transport routes.
●	 Explain that these routes are also algorithms – for these, the computer has followed

one algorithm to then work out other algorithms.
4 If you have road atlases or maps available, share these with pupils and ask them to work

out a route from one town to another. Discuss the following questions:
●	 How do they know that it is the shortest (or fastest) route?
●	 Ask them to try the same journey on Google Maps.
●	 Did Google Maps find the same route?

5 Show pupils the simplified map of actual towns and roads – called a network graph – on
TS6.2a and WS6.2a. On here, the important information has been kept but other details
have been hidden away. Ask them to find the shortest route they can from U to G on the
map. How do they know this is the shortest route?

6 Give pupils some other pairs of places (nodes) on the simplified map, again asking them
to find the shortest routes between these places. Ask pupils to describe their algorithm for
finding shortest routes. See an example on TS6.2a.

7 Explain that one algorithm could be finding all of the possible routes, working out the total
distance for each and picking the shortest.
●	 Explain that this is a slow method and that computer scientists want to find quicker

algorithms for solving a problem, just as one would want to find the quickest route
when travelling.

●	 Google Maps uses very efficient algorithms to find the shortest or fastest routes – these
involve breaking down journeys into smaller parts and finding the best routes for these
smaller journeys. This approach is called ‘divide and conquer’ and is based on the idea
of decomposition.

Challenge Pupils could:
●	 solve other problems on the graph provided, such as finding the shortest set of roads

that connect all of the towns (a minimum spanning tree), or the shortest route that
visits all of the towns (the ‘travelling salesman’ problem)

●	 investigate some of the standard algorithms for solving this problem, such as Dijkstra’s
shortest path algorithm (see Useful links page 22).

Support Pupils could:
●	 solve the problem on a simpler graph with smaller numbers
●	 experiment with finding routes between familiar places using Google Maps.

Homework ●	 Explore Google Map’s routes with parents or carers for familiar and unfamiliar journeys.
●	 Discuss how satnav directions are worked out with their parents or carers.

Session 1: Finding routes

Key to online resources

WS = Worksheet TS = Teaching slides Q = Quiz V= Video

481466_SOC_3E_U6.2_020_029.indd 23 11/08/20 11:20 AM

24 Rising Stars 2020 © Hodder & Stoughton Limited

Session 2: Finding the smallest number of coins

Learning objective To find the smallest number of coins to make change.
Steps and
activities

●	 TS6.2b
●	 V6.2b

In this session, pupils record an algorithm for finding the smallest number of coins to make
a given amount of change. They write a Scratch program to implement their algorithm.

1 Ask pupils what different ways there are to make, e.g. 8p, using normal British coins. Which
way uses the smallest number of coins? (5p, 2p and 1p.)

2 Explain that vending machines must have some way of working out the best way to give
change. The best way is the one that uses the smallest number of coins.

3 Show pupils the amounts on TS6.2b and ask them to work out the smallest number of
coins needed to give each of these amounts as change.

4 Can pupils write down the steps that they go through to find the smallest number of coins
for an amount of change?
● Their algorithm is likely to be a ‘greedy algorithm’, which starts with the largest possible

coin value and reducing the problem to progressively smaller amounts as it goes.
● Think how 28p would be given in change. They would give 20p as the largest possible

coin first. Then they would have to give change for the remaining 8p, so they would
give 5p, then 2p, then 1p.

● Explain that this algorithm also uses decomposition (as ‘divide and conquer’), in each
case reducing the problem to a simpler one and applying the same algorithm to that.

5 Ask pupils if they can think of how they might code their algorithm in Scratch.
● Have them share ideas together as a class.
● Explain that their program will need to keep track of the running total and the number

of coins given so far. They will need to use variables for this.
● Pupils will also need to test if the running total is more than the coin value. For

example, if the running total is 15p and the coin value is 20p, the algorithm needs to
be able to recognise this.

● If the running total is more, they can remove the coin value from the total and add one
to the number of coins. For example, if pupils have used two coins, and the running
total is 15p and the coin value is 10p, pupils take 10p away from 15p (leaving 5p) and
add one to the number of coins – making this three coins. Otherwise, they can move on
to the next smaller coin.

6 Give pupils some time to work on their program with a partner (you could use TS6.2b/
V6.2b to model steps 6 and 7).
● Ask them to test their program thoroughly to make sure it works as it should.
● Ask them to check that it gives the correct answer for all the amounts on TS6.2b.

7 Can pupils think of ways to improve their program?
● Could they use Scratch’s ‘make a block’ tool to simplify their program?
● Ask pupils to think about solving the problem with different currency systems.
● What if the coin values were £1.28, 64p, 32p, 16p, 8p, 4p, 2p and 1p?
● How would they change their program to work with these coin values?
● Explain that these are important numbers in computing: computers represent all

numbers using either 0 or 1 of these values: this is called the binary number system.

Challenge Pupils could:
● simplify their program, using the ‘make a block’ tool and lists in Scratch
● convert their program to work out the binary values for decimal numbers using the

same ‘greedy algorithm’.

Support Pupils could:
● be given an algorithm for change making to convert to a Scratch program
● be provided with a partially completed program, or just the blocks needed to create

their Scratch program
● find it helpful to have plastic or real coins available for the activity.

Homework Ask pupils to think of the smallest number of normal or binary coins for amounts they see
when visiting shops.

481466_SOC_3E_U6.2_020_029.indd 24 11/08/20 11:20 AM

25Rising Stars 2020 © Hodder & Stoughton Limited

Session 3: Random and linear search

Learning objective To understand random and linear search algorithms.
Steps and
activities

● TS6.2c

In this session, pupils play maths games that represent random and linear searches, before
thinking about how it might be applied as an algorithm in Scratch.

1 Introduce pupils to the ‘Guess my number’ game, which they may have played in maths.
● In the game, you think of a number and then pupils take it in turns to ask ‘Yes’ or ‘No’

questions to work out what it is.
● Play the game as a class, choosing a number from 0 to 127 and recording pupils’

questions and your answers on the whiteboard.
● For example, questions could be: ‘Is it 23?’, ‘Is it even?’, ‘Does it end in a 3?’ or ‘Is it

less than 50?’.
2 Put pupils into pairs and have them work with a partner to play the game a few times.
3 Ask pupils to think about how they might program a computer to play this game.

● Emphasise that they would need to think of an approach that could be expressed as an
algorithm.

● Ask pupils to record their ideas, perhaps as a flow chart or as pseudocode (i.e. as
instructions in English to represent the steps of their algorithm).

4 Get pupils to swap their algorithms with another pair and test them.
5 Show pupils the random search algorithm on TS6.2c.

● Ask them to explain in their own words how this works (the computer guesses randomly
in the range 0 to 127 until it guesses correctly).

● Ask pupils whether they have ideas for how this could be improved.
6 Show pupils the linear search algorithm on TS6.2c. Ask if they can explain this in their own

words (the computer starts at 0, then increases its guess by one each time until it guesses
correctly). Ask pupils to evaluate the algorithm.

Challenge

● V6.2c
● V6.2d

Show pupils the Scratch linear and random search jigsaws (see Useful links page 22). Ask them
to choose and complete one of the programs. Pupils should test the programs and assess
how efficient they are. There are solutions provided on V6.2c–d and also links provided to the
solutions in Useful links page 22.

Support

● WS6.2b

Pupils could:
● play with numbers 0–20
● use the guided question sheet (WS6.2b).

Homework Encourage pupils to think of any examples of real-world search algorithms in the home, such as
matching socks in a drawer, books on a shelf or video games on a rack. Could their algorithms
in these situations be made more efficient?

481466_SOC_3E_U6.2_020_029.indd 25 11/08/20 11:20 AM

26 Rising Stars 2020 © Hodder & Stoughton Limited

Session 4: Binary search

Learning objective To understand binary search algorithms.
Steps and
activities

●	 TS6.2d
●	 V6.2e
●	 V6.2f

In this session, pupils learn the binary search pattern, use it in a game and apply it as an
algorithm in a Scratch program.

1 Ask pupils to explain the two search algorithms that they looked at in the last session.
What problems did they have? (Both are slow and random search may never guess the
right number.)

2 Can pupils come up with a better way to play the game? Explain the binary search (divide
and conquer) algorithm, in which the range of possible numbers is cut in half each time –
so, starting with 0 to 127, one might ask: ‘Is it bigger than 64?’, if false then: ‘Is it bigger
than 32?’, if true then: ‘Is it bigger than 48?’, until the number is reached. See TS6.2d for a
diagram.

3 Ensure pupils are confident in using this method to play the game with a partner. Ask if
there are any disadvantages to this algorithm or if it could be sped up further still.

4 Ask pupils to think how they could implement this algorithm as a Scratch program.
●	 Show them the binary jigsaw Scratch program (see Useful links page 22) and ask them

to work with their partner to complete and thoroughly test this.
●	 It should only take seven questions for the program to guess the correct number.
●	 There is a solution modelled on V6.2e and in Useful links, page 22).

5 Ask pupils to predict how many goes it would take Scratch to guess a number between 0
and 1,023 (just 10) or 0 and 1,048,575 (just 20).
●	 Ask them to edit their code to make either of these the original range and to test their

program thoroughly. You could use TS6.2d/V6.2f to model this.
●	 Are pupils surprised by how quickly Scratch guesses their answer?
●	 How long would the algorithms in the previous step have taken to guess a number in

this range?
6 Explain that computer science is often less about making faster computers, and more

about finding faster ways to solve the same problem. This ‘divide and conquer’ type of
algorithm is a common one in computing and has wide applications.

Challenge Pupils could:
●	 implement this program in Scratch without the scaffolding of the jigsaw
●	 improve the user interface of the program.

Support Pupils could:
●	 play this game with a smaller number range
●	 play ‘Guess who?’ using the pirate cards from Unit 1.6: We are detectives.

Homework Encourage pupils to look for where they could use a version of this ‘divide and conquer’
algorithm for search problems in or around the home. Would a version of this work for playing
hide and seek? How might this be adapted for playing a game such as ‘Twenty Questions’?

481466_SOC_3E_U6.2_020_029.indd 26 11/08/20 11:20 AM

27Rising Stars 2020 © Hodder & Stoughton Limited

Session 5: Selection sort

Learning objective To understand selection sort algorithms.
Steps and
activities

●	 TS6.2e
●	 V6.2g

In this session, pupils work in pairs to think of possible algorithms for a sort puzzle. They
then test their algorithms with other pairs before fixing bugs in a Scratch selection sort
program.

1 Show pupils the sort puzzle equipment: a set of eight yoghurt pots/Smarties tubes with
different weights inside and a pan balance. The challenge is to sort these into weight order.

2 Pupils should work in pairs to think through a possible algorithm for this challenge. Ask
them to record their algorithm, perhaps as a flow chart or as pseudocode.

3 Encourage pupils to test their algorithms out, perhaps using paper slips with different
numbers on to represent the pots.

4 Ask pupils to swap their algorithms with another pair. They should try to explain the
algorithm in their own words and then try to work out if there are any mistakes in it, ideally
by logical reasoning, but perhaps by trying it out with numbered slips.

5 Show pupils the selection sort algorithm (TS6.2e) – in this algorithm, the computer
searches through for the heaviest mass, then the next heaviest, then the next heaviest,
and so on, until all of the masses are sorted. Ask some pupils to demonstrate this using the
pan balance; others could work through this with their partner using numbered slips.

6 Ask pupils to complete the buggy Scratch program for selection sort (see Useful links,
page 22) and to test this out with some data. Provide time for pupils to fix the bugs in
this code. (The place = length block and looking at = length blocks should be place >
length and looking at > length blocks respectively). Less confident pupils might be happier
experimenting with the solution (see Useful links page 22 or use the models provided on
TS6.2e/V6.2g).

7 Discuss the following questions with pupils:
●	 What do you think about this algorithm?
●	 Will it always work?
●	 Can you think of any way to make it faster?
●	 Would it work as well for a very long list of numbers?

8 Encourage pupils to think of applications for this algorithm around the school, such as:
●	 putting a list of marks into order
●	 sorting out library books into alphabetical order
●	 organising a group of children in height order for a school photograph.

Challenge Pupils could:
●	 implement this program in Scratch rather than debugging the code that is provided
●	 implement this algorithm as a Python program.

Support Pupils could:
●	 do the session physically with objects
●	 complete this challenge with a series of numbers
●	 work with an adult.

Homework Ask pupils to look at opportunities to practise sorting at home, e.g. crockery into size order,
clothing into an order by colour (e.g. red to violet) or video games into alphabetical order by
title. Does this algorithm seem an efficient way to do this?

481466_SOC_3E_U6.2_020_029.indd 27 11/08/20 11:20 AM

28 Rising Stars 2020 © Hodder & Stoughton Limited

Session 6: Quicksort

Learning objective To understand quicksort algorithms.
Steps and
activities

● TS6.2f
● WS6.2c
● WS6.2d
● Q6.2

In this session, pupils find a faster method for sorting numbers – called quicksort. They
practise the algorithm without computers first, before applying with computers in pairs.

1 Ask pupils to recall what they can about the selection sort algorithm from the previous
session. Ask one or more pupils to demonstrate this using the yoghurt pots/Smarties tubes
and the pan balance.

2 Ask if any pupils found a faster method for sorting numbers.
● Show the class the algorithm for quicksort on TS6.2f, in which all masses are compared

with one of the group, thereby splitting the set into those that are lighter and those
that are heavier.

● The lighter weights are sorted using the same method, picking one of these to compare
with in order to make two subsets – some lighter and some heavier, etc.

3 Encourage pupils to practise this method, using the pan balance or slips of paper. If time
allows, they could practise this algorithm in other contexts, such as alphabetical order for a
group of children or library books by author.

4 Did pupils notice that this was quicker than selection sort?
● Ask pupils to work in pairs, with one counting the number of steps as the other works

through the algorithm.
● With two computers, pupils could set up a race using one algorithm against the other

or using built-in timers to see which completes the sort more quickly. (They could use
the Scratch selection sort and Snap! quicksort programs for this – see Useful links
page 22.)

5 Encourage pupils to think of when they might use computers to sort lists into an order, for
example:
● iTunes libraries or Spotify by artist or title
● library catalogues or search results by author
● school class lists by surname or date of birth
● search results by relevance.
The significant time saving made by using quicksort has made these processes much faster
than using an algorithm such as selection sort.

6 Finish the unit in the following ways:
● Carry out the end-of-unit quiz as a whole class to check understanding. This can be

displayed on the whiteboard and done interactively or handed out as a worksheet
(Q6.2/TS6.2f/WS6.2c).

● Hand out pupil self-assessment sheet (WS6.2d). Read through the statements with
pupils and ask them to fill out the sheet.

Challenge Pupils could use the buggy Snap! program (see Useful links page 22):
● Minimise the stage and draw their attention to the quicksort and join function blocks

on the variables palette, which were created for this program.
● Show pupils how they can look inside and edit these blocks.
● Encourage them to experiment with these blocks to test the program.
● Does it always sort the list into order?
● Can pupils fix the program so that it works? (Either < head or > head blocks need to be

replaced with < head or = head or > head or = head blocks).

Support Pupils could:
● do the activity with physical objects
● complete this challenge with a series of numbers
● work with an adult.

Homework Pupils could use a quicksort algorithm for the domestic examples of sort tasks suggested in the
previous session. Have pupils noticed that this algorithm is more efficient?

481466_SOC_3E_U6.2_020_029.indd 28 11/08/20 11:20 AM

29Rising Stars 2020 © Hodder & Stoughton Limited

Unit outcomes
Below are some examples of the outcomes you could expect from this unit.

Session 1: Using a network graph Session 2: A Scratch program to find the smallest number
of coins to make a given sum

Session 3: Exploring random and linear search algorithms

Session 4: Solving a binary search jigsaw in Scratch

Session 5: Fixing the buggy Scratch selection sort
program

Session 6: Using a quicksort algorithm

481466_SOC_3E_U6.2_020_029.indd 29 09/08/20 9:40 PM

